Entropy Definitions (Scribe: FONG Silas)
Key concepts from past lectures:
Let
be i.i.d. binary random variables with Pr{ X = 1 } = p. Let T(k) be the type class containing sequences with k 1's, where k=1, 2, ..., n.
Then, the largest type class, i.e., the type class having the largest number of elements, is T(n/2) and |T(n/2)| =
.
The type class whose individual sequences are the likeliest, is either T(0) or T(n) (with probability
or
each).
The likeliest type class. i.e., the type class with the highest probability, is T(np) and |T(np)| =
.
where
denotes the number of 1's in
.
Problem set 2 question 1:
Let (X,Y) = {0,1}x{0,1} be a pair of random variables such that
is denoted by p(i,j), for (i,j) in {0,1}x{0,1}.
Let
be n i.i.d. random variables where each has the distribution P={p(i,j)}.
Define the jointly strong typical set
where
denotes
.
Claim 1: If
,
may not be inside
.
Counter example: Suppose n=4, and
. Let
= 1111 and
= 1100. It can be easily checked that
. However,
is not inside
because
.
Claim 2: If
, ![Formula](/plugin_vendor.php?eqn=13c644a91fd18054d0e73dd4478b0c9a)
Proof: Note that X is a binomial random variable with
.
If
,
and
.
Now,
![Formula](/plugin_vendor.php?eqn=5c9484932a677297773b8ac69902cb7a)
.
Therefore,
.
Claim 3: For any c>0, n and sufficiently small
>0, given
, if
and
, there exist
that are not inside
.
Proof:
Suppose
. Let
and
be such that the first half of each string is all 1s, and the second half of each string is all 0s.
Note that for any n,
,
and
. However,
is not in
because
.
FACT 1:
where ![Formula](/plugin_vendor.php?eqn=cf44959a81ad8193068f70399a3925a2)
The proof is similar to the computation of the size of the typical set of a single variable.
FACT 2:
Given any
, define
. Then,
where
.
Proof of FACT 2:
For each
, there are approximately nPr{Y=1}=n(p(0,1)+p(1,1)) 1's and nPr{Y=0}=n(p(0,0)+p(1,0)) 0's.
There are about
such that
. Using Stirling's approximation gives us the desired result.
FACT 3:
where
.
FACT 4:
The probability of observing a sequence
with type p(.) rather than the true type q(.)
where
(as observed in a previous class)
Comments (1)
sidjaggi said
at 4:55 pm on Mar 17, 2009
I'm done editing -- any comments from anyone else?
You don't have permission to comment on this page.