| 
  • If you are citizen of an European Union member nation, you may not use this service unless you are at least 16 years old.

  • Whenever you search in PBworks or on the Web, Dokkio Sidebar (from the makers of PBworks) will run the same search in your Drive, Dropbox, OneDrive, Gmail, Slack, and browsed web pages. Now you can find what you're looking for wherever it lives. Try Dokkio Sidebar for free.

View
 

Scribe Notes 6-4

Page history last edited by Tong 14 years, 2 months ago

 Last class

Channel with feed-back

source channel separation

 

concatenated codes (again)

we have  

Source information k bits                                    

             

 

outer code Use the RS Code to do the encode 

n bits 

                       

 \   log n     /

 to be able to encode the RS, R < 1-2p 

How many information symbols ?    ( n/ log n ) *(1-2p)

 

inner code : use the GV code to do the encode

the length of each symbol is  log n

n bits

                       

 \   log n     /

For GV   R< 1- H(2p_2)

 the number of information symbols =  ( 1- H(2p_2))( n/ log n ) *(1-2p)

 

 

Channel

encode               encode          channel          decode            decode         

outer code    --   inner code     ---------->      inner code   --  outer code

 

 

 

Gaussion channel

fake channel : transmit n bits by real number

 

Power   -1. Too large:

            -2. Too small : lead noise.

 

 

case: r is transmited and a gaussion noise will be added in channel

r1 --> + --> r1 +N1 

        ^

         |

        N(0,)  => AWGN  (Addtive White Gaussion Noise) Channel

 

dfsf 

Message : 

average power constraint  :  

(in textbook   )

 

-------------------------------->           Channel    ----------------------->

 

       

The capacity of a Gaussion channel with power constraint P and noise variance N is

C = 1/2 log (1+P/N) bits

the radius of the big ball is

the radius  of the sphere is  

The maximum number of non-intersecting decoding spheres  is no more than  

 

 

and

The capacity =

Formula

                                                          ||               ||

                                                       h(X+n)       h(x+n|x)     since Y= X+N

                                                                           ||

                                                                         h(n) 

 

Given one particular message

 how to achive the max capacity? when X is N(0,P) 

 

 

Comments (0)

You don't have permission to comment on this page.