IERG5154 Final (72 hours)

Open notes, open book (Cover and Thomas), no internet (won't really help), no collaboration (for fairness). Hard-copy answer-sheet preferable, but if you're not on campus on Monday, soft-copy emailed to us is also ok.

1. Secrecy for the erasure channel (8 points): Alice wishes to send Bob a message M over a binary erasure channel with erasure probability p. However, each bit X_{i} that she transmits to Bob is also overheard by evil eavesdropper Calvin, who hears a "degraded" version of the message Bob hears with erasure probability p^{\prime}. Specifically, the bits Calvin overhears are a subset of the bits Bob hears, and the end-to-end channels from Alice to Bob and from Alice to Calvin are respectively $\operatorname{BEC}(p)$ and $\operatorname{BEC}\left(p^{\prime}\right)$. Alice wants to ensure that her message to Calvin is "secret", i.e., the mutual information between Alice's message M and Calvin's observations Z^{n} is at most ϵn.
(a) (2 points): Use information theory inequalities to prove that Alice's optimal rate of secret transmission is no more than $p^{\prime}-p$ if $p^{\prime}>p$, and zero otherwise.
(b) Show that random linear codes achieve such performance. Show that such codes have good computational complexity for Alice and Bob. Choose X^{n} to be a random binary linear code (known to both Bob and Calvin) of the message's $R n=\left(p^{\prime}-p-\epsilon\right) n$ bits, and $n\left(1-p^{\prime}\right)$ random bits denoted by K (K is known to neither Bob nor Calvin). ${ }^{1}$ Hint: A "fact" that is useful to know (and that you may use without proof) is that with high probability over the choice of random $m \times n$ binary matrices, the probability that it has full rank over \mathbb{F}_{2} (the binary field) is at least $1-2^{-c|m-n|}$, for a universal constant $c>0 .{ }^{2}$ Proceed as in the following two parts.
i. (3 points): Prove that with high probability over the choice of random linear codes Bob can indeed decode M. What is Alice's encoding complexity, and Bob's decoding complexity?
ii. (3 points): Prove that Calvin has mutual information at most $\mathcal{O}(\epsilon n)$ with M, i.e., prove that over the randomness in the channel, Calvin's observations are "almost independent" of M. Hint: Can you show that, with high probability over erasure patterns and your random linear code, for any (M, K) pair giving a particular observation Z^{n} to Calvin, and any $M^{\prime} \neq M$, there exists a K^{\prime} such that the (M^{\prime}, K^{\prime}) pair produces the same Z^{n} ?
2. Rate-distortion curve under a "different" distortion measure (4 points): A zero-mean σ^{2}-variance Gaussian source is required to be compressed. The per-symbol distortion measure, however, is given by $2(x-\hat{x}+1)^{2}+2$. Compute the rate-distortion function for this source. Hint: This is closely related to Problem 10.18 from Cover and Thomas (which you'll need to solve to solve this problem), but there's an important difference - be sure to point it out in your answer.

[^0]3. Concatenated codes against "omniscient" adversaries (6 points): A certain binaryinput binary-output channel has an "omniscient" (meaning "knowing everything") adversary. The description of the channel is as follows. Let the input to the channel be X^{n}. The adversary can flip up to any $p n$ bits of the channel by adding a binary vector Z^{n} (of Hamming weight at most $p n$) to X^{n}. This Z^{n} may be a function of X^{n}. Based on $Y^{n}=X^{n} \oplus Z^{n}$, the receiver is required to decode X^{n} with zero error. ${ }^{3}$ For such a channel, describe a concatenated coding scheme that enables the encoder and decoder to computationally efficiently encode and decode at as high a rate as possible. Formulate your answer as the solution to maximization problem. What's the highest value of p for which your codes achieve a strictly positive rate? ${ }^{4}$ Hint: Remember, these are "worst-case" channels, and hence you cannot expect that errors will behave randomly. However, recall that both Gilbert-Varshamov codes and Reed-Solomon codes can handle worst-case errors.
4. Random walk in two dimensions (7 points): A drunken man is walking on a square grid. With each step, he has probability $p_{1}=4 / 10$ of moving one step in the positive x direction, probability $p_{2}=1 / 10$ of moving one step in the negative x direction, probability $p_{3}=3 / 10$ of moving one step in the positive y direction, and probability $p_{4}=2 / 10$ of moving one step in the negative y direction.
(a) (1 point): After n steps, what is his expected position?
(b) (2 points): After n steps, what is the probability that he has taken exactly $k_{1} n$ steps in the positive x-direction, $k_{2} n$ in the negative x-direction, $k_{3} n$ steps in the positive x direction, and $k_{4} n$ in the negative y-direction $\left(k_{1}+k_{2}+k_{3}+k_{4}=1, k_{i} \geq 0 \forall i\right)$? Use Stirling's approximation to write this overall probability in the form $\doteq 2^{-c n}$ for some c that depends on ($p_{1}, p_{2}, p_{3}, p_{4}$) and ($k_{1}, k_{2}, k_{3}, k_{4}$).
(c) (4 points): To first order in exponent, what is the probability that after n steps the drunken man is outside the box given by $0.2 n \leq x \leq 0.4 n, 0 \leq y \leq 0.2 n$? That is, compute this probability $\doteq 2^{-c^{\prime} n}$ for some c^{\prime}. To get points for this question you need to find the exact value of c^{\prime}, depending only on the ($p_{1}, p_{2}, p_{3}, p_{4}$) values given in this problem. Hint: Use the answer of the previous part to compute the probability for the "likeliest" tuple ($k_{1}, k_{2}, k_{3}, k_{4}$) outside this box, and then note that there's at most a polynomial number of possible $\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ tuples.

References

[1] Colin Cooper, "On the distribution of rank of a random matrix over a finite field," Random Structures and Algorithms 17 (2000), 197-212.

[^1]
[^0]: ${ }^{1} \mathrm{~A}$ binary linear code takes linear combinations of the source message bits over \mathbb{F}_{2} to generate the codeword's bits.
 ${ }^{2}$ This fact is not hard to prove, but for the interested reader [1] has a more sophisticated result.

[^1]: ${ }^{3}$ These are exactly the "coding theory" channels we considered in class, for which we studied Gilbert-Varshamov codes, and the Plotkin and Hamming bounds.
 ${ }^{4} \mathrm{GV}$ codes are currently the codes with the highest known rates against such a channel, but they are not computationally efficient. (Why?) However, there are no currently known codes that computationally efficiently achieve the same rates $(1-H(2 p))$ that GV codes do. This can act as a sanity check on your answer. (Alternatively, if you can design codes with rates equaling or exceeding $1-H(2 p)$, you're guaranteed an $A+++$ in the course...)

