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1 Background of source code

The following figure Fig. 1 shows the basic encode and decode system.
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Figure 1: Encode and decode

In which, random variable sequence Xn is the message the transmitter want to send,
and each random of the sequence is selected from the set X . Directly transmitting the
message may be not possible, we need to define the corresponding codeword of the message
that can be transmitted. Assign the messages with different codewords is the encoding.
Assume the codebook (the set of all possible codewords) is a random variable Y nR drown
from the set Y . The function which maps the message to the codeword is called encoder
function, and is denoted as fn. At the receiver end, the receiver receive the codeword,
and he is supposed to recover the message from the codeword. This recovering is done
by decoder. The function which maps the codeword to the possible message is called
decoder function, denoted as gn. Of course, there may be some error such that the
recovered message is different from the transmitted message.
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For example, a particular message xn is encoded by the function fn to a codeword
ynR, then at the receiver end, ynR is decoded by the function gn to the possible message
x̂n. Hopefully, x̂n = xn, and whenever this does not hold, an error happens. The pair of
functions (fn, gn) is called code scheme.

The definition of error probability is

PXn(Xn 6= X̂n) =
∑
xn

P (xn)1(x̂n 6=xn). (1)

The definition of rate is the average length of the codewords,

R =
∑
xn

P (xn)l(ynR), (2)

where ynR = fn(x
n), and the normalized case definition is

R =

∑
xn P (xn)l(ynR)

n
. (3)

2 Converse for source coding theorem

The direct part of source coding says that if the coding rate R is greater than the source
entropy H(X), the coding rate tends to H(x) and the error tends to 0. The converse part
says that if block code with rate less than the source entropy H(X), the error probability
will always exist. The following inequalities will prove the the converse part of source
coding.

nH(X)
(a)
= H(Xn)
(b)
= H(Xn|X̂n) + I(Xn; X̂n)
(c)

≤ H(Xn|X̂n) + I(Xn;Y nR)
(d)

≤ H(Xn|X̂n) +H(Y nR)
(e)

≤ H(Xn|X̂n) + nRH(Y )
(f)

≤ H(Xn|X̂n) + nR
(g)

≤ 1 + P (Xn 6= X̂n)n log |X |+ nR,

where

• (a) follows from X1, . . . , Xn are i.i.d. with entropy H(X);

• (b) follows from identity H(X) = H(X|Y ) + I(X;Y );

• (c) follows from Data Processing Inequality (DMI);
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• (d) follows from I(X;Y ) ≤ min {H(X), H(Y )};

• (e) follows from H(Y nR) is maximized if all Yi are i.i.d.;

• (f) follows from binary entropy H(Y ) ≤ 1;

• (g) follows from Fano’s inequality.

Thus, if R < H(X), we have

P (Xn 6= X̂n) ≥ nH(x)− nR− 1

n log |X |
, (4)

the lower bound when n→∞ is

lim
n→∞

P (Xn 6= X̂n) ≥ H(x)−R

log |X |
> 0. (5)

The condition is tight when Y is i.i.d. and uniformly distributed and the mapping from
X → Y is a one-one mapping. Here, it’s important to use fixed-length block coding.

The above converse reflects that when coding rate is less than the source entropy, then
there must be some error which can not be eliminated.

3 Achievablility for source coding theorem

To be continued...

4 Converse for channel coding theorem

The channel coding theorem is that any channel rate Rc is achievable for a discrete
memoryless channel if and only if Rc ≤ C, where C is the capacity of the channel,

C = sup
p(x)

I(X;Y ).

The converse says that for any Rc > C, the error probability must exist and can not be
eliminated.

The representation of channel is shown in Fig. 2.
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Figure 2: Channel coding

To prove the converse for the channel coding, first we need to prove I(Xn;Y n) ≤ nC,

I(Xn;Y n)
(a)
= H(Y n)−H(Y n|Xn)

(b)

≤
n∑

i=1

H(Yi)−H(Y n|Xn)

(c)
=

n∑
i=1

H(Yi)−
n∑

i=1

H(Yi|Y1, . . . , Yi−1, X
n)

(d)
=

n∑
i=1

H(Yi)−
n∑

i=1

H(Yi|Xi)

(e)
=

n∑
i=1

I(Xi;Yi)

(f)

≤ n sup
p(x)

I(X;Y ) = nC, (6)

where

• (a) and (e) follow from identity I(X;Y ) = H(X)−H(X|Y );

• (b) follows from H(Y n) is maximized if all Yi are i.i.d.;

• (c) follows from chain rule;

• (d) follows from the channel is Discrete Memoryless Channel (DMC);

• (f) follows from definition of channel capacity.

Then prove

nR
(a)
= H(U)
(b)
= H(U |Û) + I(U ; Û)
(c)

≤ H(U |Û) + I(Xn;Y n)
(d)

≤ 1 + P (n)
e n log |X |+ nC,

(a)
= 1 + P (n)

e nR + nC (7)

where
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• (a) follows from fixed-length uniformly distribution of Xi;

• (b) follows from identity H(X) = H(X|Y ) + I(X;Y );

• (c) follows from DMI;

• (d) follows from Fano’s inequality and inequality (6);

From the result (7), it can be derived that

P (n)
e ≥ 1− C

R
− o(1).

Because R > C, P (n)
e > 0 always holds, then the converse for channel coding is proved.

5 Achievability for channel coding theorem

To be continued...
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